1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
| struct Circle { Point c; T r;
bool operator==(const Circle &a) const { return c == a.c && abs(r - a.r) <= eps; } T circ() const { return 2 * PI * r; } T area() const { return PI * r * r; }
int is_in(const Point &p) const { const T d = p.dis(c); return abs(d - r) <= eps ? -1 : d < r - eps; }
int relation(const Line &l) const { const T d = l.dis(c); if (d > r + eps) return 0; if (abs(d - r) <= eps) return 1; return 2; }
int relation(const Circle &a) const { if (*this == a) return -1; const T d = c.dis(a.c); if (d > r + a.r + eps) return 0; if (abs(d - r - a.r) <= eps) return 1; if (abs(d - abs(r - a.r)) <= eps) return 3; if (d < abs(r - a.r) - eps) return 4; return 2; }
vector<Point> inter(const Line &l) const { const T d = l.dis(c); const Point p = l.proj(c); const int t = relation(l); if (t == 0) return vector<Point>(); if (t == 1) return vector<Point>{p}; const T k = sqrt(r * r - d * d); return vector<Point>{p - (l.v / l.v.len()) * k, p + (l.v / l.v.len()) * k}; }
vector<Point> inter(const Circle &a) const { const T d = c.dis(a.c); const int t = relation(a); if (t == -1 || t == 0 || t == 4) return vector<Point>(); Point e = a.c - c; e = e / e.len() * r; if (t == 1 || t == 3) { if (r * r + d * d - a.r * a.r >= -eps) return vector<Point>{c + e}; return vector<Point>{c - e}; } const T costh = (r * r + d * d - a.r * a.r) / (2 * r * d), sinth = sqrt(1 - costh * costh); return vector<Point>{c + e.rot(costh, -sinth), c + e.rot(costh, sinth)}; }
T inter_area(const Circle &a) const { const T d = c.dis(a.c); const int t = relation(a); if (t == -1) return area(); if (t < 2) return 0; if (t > 2) return min(area(), a.area()); const T costh1 = (r * r + d * d - a.r * a.r) / (2 * r * d), costh2 = (a.r * a.r + d * d - r * r) / (2 * a.r * d); const T sinth1 = sqrt(1 - costh1 * costh1), sinth2 = sqrt(1 - costh2 * costh2); const T th1 = acos(costh1), th2 = acos(costh2); return r * r * (th1 - costh1 * sinth1) + a.r * a.r * (th2 - costh2 * sinth2); }
vector<Line> tangent(const Point &a) const { const int t = is_in(a); if (t == 1) return vector<Line>(); if (t == -1) { const Point v = {-(a - c).y, (a - c).x}; return vector<Line>{{a, v}}; } Point e = a - c; e = e / e.len() * r; const T costh = r / c.dis(a), sinth = sqrt(1 - costh * costh); const Point t1 = c + e.rot(costh, -sinth), t2 = c + e.rot(costh, sinth); return vector<Line>{{a, t1 - a}, {a, t2 - a}}; }
vector<Line> tangent(const Circle &a) const { const int t = relation(a); vector<Line> lines; if (t == -1 || t == 4) return lines; if (t == 1 || t == 3) { const Point p = inter(a)[0], v = {-(a.c - c).y, (a.c - c).x}; lines.push_back({p, v}); } const T d = c.dis(a.c); const Point e = (a.c - c) / (a.c - c).len(); if (t <= 2) { const T costh = (r - a.r) / d, sinth = sqrt(1 - costh * costh); const Point d1 = e.rot(costh, -sinth), d2 = e.rot(costh, sinth); const Point u1 = c + d1 * r, u2 = c + d2 * r, v1 = a.c + d1 * a.r, v2 = a.c + d2 * a.r; lines.push_back({u1, v1 - u1}); lines.push_back({u2, v2 - u2}); } if (t == 0) { const T costh = (r + a.r) / d, sinth = sqrt(1 - costh * costh); const Point d1 = e.rot(costh, -sinth), d2 = e.rot(costh, sinth); const Point u1 = c + d1 * r, u2 = c + d2 * r, v1 = a.c - d1 * a.r, v2 = a.c - d2 * a.r; lines.push_back({u1, v1 - u1}); lines.push_back({u2, v2 - u2}); } return lines; }
std::variant<Circle, Line> inverse(const Line &l) const { if (l.toleft(c) == 0) return l; const Point v = l.toleft(c) == 1 ? Point{l.v.y, -l.v.x} : Point{-l.v.y, l.v.x}; const T d = r * r / l.dis(c); const Point p = c + v / v.len() * d; return Circle{(c + p) / 2, d / 2}; }
std::variant<Circle, Line> inverse(const Circle &a) const { const Point v = a.c - c; if (a.is_in(c) == -1) { const T d = r * r / (a.r + a.r); const Point p = c + v / v.len() * d; return Line{p, {-v.y, v.x}}; } if (c == a.c) return Circle{c, r * r / a.r}; const T d1 = r * r / (c.dis(a.c) - a.r), d2 = r * r / (c.dis(a.c) + a.r); const Point p = c + v / v.len() * d1, q = c + v / v.len() * d2; return Circle{(p + q) / 2, p.dis(q) / 2}; } };
|