多项式乘法
这里没有很细节的了解原理,几乎就是当黑盒来用的。
FFT
例题是高精度乘法,需要处理进位。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;const double PI = acos (-1.0 );struct Complex { double x, y; Complex (double x_ = 0 , double y_ = 0 ) { x = x_; y = y_; } Complex operator +(const Complex &b) const { return Complex (x + b.x, y + b.y); } Complex operator -(const Complex &b) const { return Complex (x - b.x, y - b.y); } Complex operator *(const Complex &b) const { return Complex (x * b.x - y * b.y, x * b.y + y * b.x); } }; void change (Complex y[], int len) { for (int i = 1 , j = len / 2 , k; i < len - 1 ; i++) { if (i < j) { std::swap (y[i], y[j]); } k = len / 2 ; while (j >= k) { j -= k; k /= 2 ; } if (j < k) { j += k; } } } void fft (Complex y[], int len, int on) { change (y, len); for (int h = 2 ; h <= len; h *= 2 ) { Complex wn (cos(2 * PI / h), sin(on * 2 * PI / h)) ; for (int j = 0 ; j < len; j += h) { Complex w (1 , 0 ) ; for (int k = j; k < j + h / 2 ; k++) { Complex u = y[k]; Complex t = w * y[k + h / 2 ]; y[k] = u + t; y[k + h / 2 ] = u - t; w = w * wn; } } } if (on == -1 ) { for (int i = 0 ; i < len; i++) { y[i].x /= len; } } } constexpr int N = 2100010 ;Complex a[N], b[N], ans[N]; signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int n, m; cin >> n >> m; for (int i = 0 ; i <= n; i++) { cin >> a[i].x; } for (int i = 0 ; i <= m; i++) { cin >> b[i].x; } int len = 1 ; while (len <= n + m) { len *= 2 ; } fft (a, len, 1 ); fft (b, len, 1 ); for (int i = 0 ; i < len; i++) { ans[i] = a[i] * b[i]; } fft (ans, len, -1 ); for (int i = 0 ; i <= n + m; i++) { cout << (int )(ans[i].x + 0.5 ) << " \n" [i == n + m]; } return 0 ; }
固定模数NTT
常见的 NTT 模数有 998244353,1004535809, 469762049。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;constexpr int P = 998244353 ;constexpr int g = 3 ;int power (int a, int b) { int res = 1 ; for (; b; b /= 2 , a = 1LL * a * a % P) { if (b % 2 ) { res = 1LL * res * a % P; } } return res; } std::vector<int > rev, roots{0 , 1 }; void dft (std::vector<int > &a) { int n = a.size (); if ((int )(rev.size ()) != n) { int k = __builtin_ctz(n) - 1 ; rev.resize (n); for (int i = 0 ; i < n; i++) { rev[i] = rev[i >> 1 ] >> 1 | (i & 1 ) << k; } } for (int i = 0 ; i < n; i++) { if (rev[i] < i) { std::swap (a[i], a[rev[i]]); } } if (roots.size () < n) { int k = __builtin_ctz(roots.size ()); roots.resize (n); while ((1 << k) < n) { int e = power (g, (P - 1 ) >> (k + 1 )); for (int i = 1 << (k - 1 ); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1 ] = 1LL * roots[i] * e % P; } k++; } } for (int k = 1 ; k < n; k *= 2 ) { for (int i = 0 ; i < n; i += 2 * k) { for (int j = 0 ; j < k; j++) { int u = a[i + j]; int v = 1LL * a[i + j + k] * roots[k + j] % P; a[i + j] = (u + v) % P; a[i + j + k] = (u - v + P) % P; } } } } void idft (std::vector<int > &a) { int n = a.size (); std::reverse (a.begin () + 1 , a.end ()); dft (a); int inv = power (n, P - 2 ); for (int i = 0 ; i < n; i++) { a[i] = 1LL * a[i] * inv % P; } } std::vector<int > mul (std::vector<int > a, std::vector<int > b) { int n = 1 , tot = a.size () + b.size () - 1 ; while (n < tot) { n *= 2 ; } if (tot < 128 ) { std::vector<int > c (a.size() + b.size() - 1 ) ; for (int i = 0 ; i < a.size (); i++) { for (int j = 0 ; j < b.size (); j++) { c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % P; } } return c; } a.resize (n); b.resize (n); dft (a); dft (b); for (int i = 0 ; i < n; i++) { a[i] = 1LL * a[i] * b[i] % P; } idft (a); a.resize (tot); return a; } signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int n, m; cin >> n >> m; vector<int > a (n + 1 ) , b (m + 1 ) ; for (int i = 0 ; i <= n; i++) { cin >> a[i]; } for (int i = 0 ; i <= m; i++) { cin >> b[i]; } auto c = mul (a, b); for (int i = 0 ; i <= n + m; i++) { cout << c[i] << " \n" [i == n + m]; } return 0 ; }
任意模数 NTT(MTT)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 #include <bits/stdc++.h> using namespace std;using i64 = long long ;using i128 = __int128_t ;constexpr i64 mod1 = 998244353 ;constexpr i64 mod2 = 1004535809 ;constexpr i64 mod3 = 469762049 ;constexpr i64 G = 3 ;i64 power (i64 a, i64 e, i64 mod) { i64 r = 1 % mod; a %= mod; while (e) { if (e & 1 ) r = (i128)r * a % mod; a = (i128)a * a % mod; e >>= 1 ; } return r; } void bit_reverse (vector<i64> &a) { int n = (int )a.size (); int j = 0 ; for (int i = 1 ; i < n; ++i) { int bit = n >> 1 ; for (; j & bit; bit >>= 1 ) j ^= bit; j ^= bit; if (i < j) swap (a[i], a[j]); } } void ntt (vector<i64> &a, int sign, i64 mod) { int n = (int )a.size (); bit_reverse (a); for (int len = 2 ; len <= n; len <<= 1 ) { i64 wn = power (G, (mod - 1 ) / len, mod); if (sign == -1 ) wn = power (wn, mod - 2 , mod); for (int i = 0 ; i < n; i += len) { i64 w = 1 ; int half = len >> 1 ; for (int j = 0 ; j < half; ++j) { i64 u = a[i + j]; i64 v = (i128)w * a[i + j + half] % mod; a[i + j] = u + v; if (a[i + j] >= mod) a[i + j] -= mod; a[i + j + half] = u - v; if (a[i + j + half] < 0 ) a[i + j + half] += mod; w = (i128)w * wn % mod; } } } if (sign == -1 ) { i64 inv = power (n, mod - 2 , mod); for (int i = 0 ; i < n; ++i) a[i] = (i128)a[i] * inv % mod; } } vector<i64> multiply_mod (vector<i64> a, vector<i64> b, i64 mod) { if (a.empty () || b.empty ()) return {}; int tot = (int )a.size () + (int )b.size () - 1 ; int sz = 1 ; while (sz < tot) sz <<= 1 ; a.resize (sz); b.resize (sz); ntt (a, 1 , mod); ntt (b, 1 , mod); for (int i = 0 ; i < sz; ++i) a[i] = (i128)a[i] * b[i] % mod; ntt (a, -1 , mod); a.resize (tot); return a; } vector<i64> multiply_crt (vector<i64> a, vector<i64> b, i64 p) { if (a.empty () || b.empty ()) return {}; auto c1 = multiply_mod (a, b, mod1); auto c2 = multiply_mod (a, b, mod2); auto c3 = multiply_mod (a, b, mod3); int n = (int )c1. size (); i128 M1 = (i128)mod1; i128 M2 = (i128)mod2; i128 M3 = (i128)mod3; i128 M12 = M1 * M2; i64 mod12_ll = (i64)(M12); i64 inv1_mod2 = power (mod1 % mod2, mod2 - 2 , mod2); i64 inv12_mod3 = power ((i64)((M12) % mod3), mod3 - 2 , mod3); vector<i64> res (n) ; for (int i = 0 ; i < n; ++i) { i64 r1 = c1[i]; i64 r2 = c2[i]; i64 r3 = c3[i]; i64 diff = (r2 - r1) % mod2; if (diff < 0 ) diff += mod2; i64 k1 = (i128)diff * inv1_mod2 % mod2; i128 t12 = (i128)r1 + (i128)k1 * (i128)mod1; i64 t12_mod3 = (i64)(t12 % mod3); i64 diff3 = (r3 - t12_mod3) % mod3; if (diff3 < 0 ) diff3 += mod3; i64 k2 = (i128)diff3 * inv12_mod3 % mod3; i128 result128 = t12 + (i128)k2 * M12; i64 finalv = (i64)(result128 % p); if (finalv < 0 ) finalv += p; res[i] = finalv; } return res; } int main () { ios::sync_with_stdio (false ); cin.tie (nullptr ); int n, m; long long p; if (!(cin >> n >> m >> p)) return 0 ; vector<i64> A (n + 1 ) , B (m + 1 ) ; for (int i = 0 ; i <= n; ++i) cin >> A[i]; for (int i = 0 ; i <= m; ++i) cin >> B[i]; auto C = multiply_crt (A, B, p); for (int i = 0 ; i <= n + m; ++i) { cout << C[i] << (i == n + m ? '\n' : ' ' ); } return 0 ; }
题意
给定实数 \(q_i\) ,定义 \(F_j = \sum_{i=1}^{j - 1}\dfrac{q_i\times
q_j}{(i-j)^2} - \sum_{i=j+1}^{n}\dfrac{q_i\times
q_j}{(i-j)^2}\) ,对于 \(1\le i\le
n\) , 求 \(E_i =
\dfrac{F_i}{q_i}\) 。
题解
学多项式首先要知道多项式拿来干嘛的...上面的多项式乘法学了还是不知道,通过这题可以了解多项式第一个应用——优化卷积运算,通过多项式乘法,我们可以快速求出结果。
\[
E_j =\sum_{i=1}^{j}\dfrac{ q_i}{(i-j)^2} -
\sum_{i=j}^{n}\dfrac{q_i}{(i-j)^2}\\\\
\] 我们定义 \(a_i = q_i, b_i =
\dfrac{1}{i^2}\) ,那么可以写成如下形式: \[
E_j = \sum_{i=1}^ja_ib_{j-i} - \sum_{i=j}^na_ib_{i-j}
\] 前者已经是卷积的形式了,继续化简后者,一个常见的做法是定义
\(c_i = a_{n-i}\) \[
\sum_{i=j}^na_ib_{i-j} &= \sum_{i=j}^nc_{n-i}b_{i-j}\\\\
&=\sum_{i=0}^{n-j}c_{n-i-j}b_i\\\\
&=\sum_{i=0}^tc_{t-i}b_i
\] 我们设 \(F(x) =
\sum_{i=1}^ja_ib_{j-i},G(x) = \sum_{i=0}^tc_{t-i}b_i\) ,我们设
\(l_i,r_i\) 分别是 \(F(x),G(x)\) 中 \(x^i\) 项的系数,如果我们直接将多项式 \(a(x)\) 和 \(b(x)\) 相乘,第 \(i\) 项的系数就是序列卷积的结果。那么 \(E_i = l_i - r_{n - i}\) 。
时间复杂度:\(O(n\log n)\)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;const double PI = acos (-1.0 );struct Complex { double x, y; Complex (double x_ = 0 , double y_ = 0 ) { x = x_; y = y_; } Complex operator +(const Complex &b) const { return Complex (x + b.x, y + b.y); } Complex operator -(const Complex &b) const { return Complex (x - b.x, y - b.y); } Complex operator *(const Complex &b) const { return Complex (x * b.x - y * b.y, x * b.y + y * b.x); } }; void change (Complex y[], int len) { for (int i = 1 , j = len / 2 , k; i < len - 1 ; i++) { if (i < j) { std::swap (y[i], y[j]); } k = len / 2 ; while (j >= k) { j -= k; k /= 2 ; } if (j < k) { j += k; } } } void fft (Complex y[], int len, int on) { change (y, len); for (int h = 2 ; h <= len; h *= 2 ) { Complex wn (cos(2 * PI / h), sin(on * 2 * PI / h)) ; for (int j = 0 ; j < len; j += h) { Complex w (1 , 0 ) ; for (int k = j; k < j + h / 2 ; k++) { Complex u = y[k]; Complex t = w * y[k + h / 2 ]; y[k] = u + t; y[k + h / 2 ] = u - t; w = w * wn; } } } if (on == -1 ) { for (int i = 0 ; i < len; i++) { y[i].x /= len; } } } constexpr int N = 270000 ;Complex a[N], b[N], c[N], F[N], G[N]; signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int n; cin >> n; for (int i = 1 ; i <= n; i++) { cin >> a[i].x; c[n - i].x = a[i].x; b[i] = 1.0l / i / i; } int len = 1 ; while (len <= n + n) { len *= 2 ; } fft (a, len, 1 ); fft (b, len, 1 ); fft (c, len, 1 ); for (int i = 0 ; i < len; i++) { F[i] = a[i] * b[i]; G[i] = c[i] * b[i]; } fft (F, len, -1 ); fft (G, len, -1 ); for (int i = 1 ; i <= n; i++) { cout << fixed << setprecision (10 ) << F[i].x - G[n - i].x << "\n" ; } return 0 ; }
题意
两个环各有 \(n\)
个珠子,每个珠子写有一个数字 \(a_i,b_i\) ,选择 \([-m,m]\) 中的一个数 \(x\) ,给一个环的所有数都添加,求 \(\sum_{i=1}^n(a_i - b_i)^2\)
的最小值,环可以旋转。
\(n\le 50000,m\le 100\) 。
题解
\[
\sum_{i=1}^n(a_i-b_i + x)^2 = \sum_{i=1}^na_i^2 + \sum_{i=1}^nb_i^2
+nx^2 + 2x(\sum_{i=1}^na_i-\sum_{i=1}^nb_i) - 2\sum_{i=1}^na_ib_i
\]
注意我们枚举 \(x\) 时,只有 \(\sum_{i=1}^na_ib_i\)
的值不确定,我们需要求它的最小值。
这是一个经典的卷积方法,我们将 \(a\)
逆序,即 \(a_i \leftarrow
a_{n-i+1}\) ,就变成了 \(\sum_{i=1}^na_{n-i+1}b_i\) ,这个式子可以是卷积形式。对环的处理也非常经典,将
\(b\) 复制一次后,\(\sum_{i=1}^na_ib_i\) 的最小值就是 \(x^{n+1},x^{n+2},...,x^{2n}\)
对应的系数的最小值。
时间复杂度:\(O(n\log n + m)\)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;constexpr int P = 998244353 ;int power (int a, int b) { int res = 1 ; for (; b; b /= 2 , a = 1LL * a * a % P) { if (b % 2 ) { res = 1LL * res * a % P; } } return res; } std::vector<int > rev, roots{0 , 1 }; void dft (std::vector<int > &a) { int n = a.size (); if ((int )(rev.size ()) != n) { int k = __builtin_ctz(n) - 1 ; rev.resize (n); for (int i = 0 ; i < n; i++) { rev[i] = rev[i >> 1 ] >> 1 | (i & 1 ) << k; } } for (int i = 0 ; i < n; i++) { if (rev[i] < i) { std::swap (a[i], a[rev[i]]); } } if (roots.size () < n) { int k = __builtin_ctz(roots.size ()); roots.resize (n); while ((1 << k) < n) { int e = power (31 , 1 << (__builtin_ctz(P - 1 ) - k - 1 )); for (int i = 1 << (k - 1 ); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1 ] = 1LL * roots[i] * e % P; } k++; } } for (int k = 1 ; k < n; k *= 2 ) { for (int i = 0 ; i < n; i += 2 * k) { for (int j = 0 ; j < k; j++) { int u = a[i + j]; int v = 1LL * a[i + j + k] * roots[k + j] % P; a[i + j] = (u + v) % P; a[i + j + k] = (u - v + P) % P; } } } } void idft (std::vector<int > &a) { int n = a.size (); std::reverse (a.begin () + 1 , a.end ()); dft (a); int inv = power (n, P - 2 ); for (int i = 0 ; i < n; i++) { a[i] = 1LL * a[i] * inv % P; } } std::vector<int > mul (std::vector<int > a, std::vector<int > b) { int n = 1 , tot = a.size () + b.size () - 1 ; while (n < tot) { n *= 2 ; } if (tot < 128 ) { std::vector<int > c (a.size() + b.size() - 1 ) ; for (int i = 0 ; i < a.size (); i++) { for (int j = 0 ; j < b.size (); j++) { c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % P; } } return c; } a.resize (n); b.resize (n); dft (a); dft (b); for (int i = 0 ; i < n; i++) { a[i] = 1LL * a[i] * b[i] % P; } idft (a); a.resize (tot); return a; } signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int n, m; cin >> n >> m; int suma1 = 0 , suma2 = 0 , sumb1 = 0 , sumb2 = 0 ; vector<int > A (n + 1 ) , a (n + 1 ) , b (2 * n + 1 ) ; for (int i = 1 ; i <= n; i++) { cin >> A[i]; suma1 += A[i]; suma2 += A[i] * A[i]; } for (int i = 1 ; i <= n; i++) { cin >> b[i]; b[i + n] = b[i]; sumb1 += b[i]; sumb2 += b[i] * b[i]; a[i] = A[n - i + 1 ]; } auto c = mul (a, b); int mx = -2e18 ; for (int i = n + 1 ; i <= 2 * n; i++) { mx = max (mx, c[i]); } int ans = 2e18 ; for (int x = -m; x <= m; x++) { ans = min (ans, suma2 + sumb2 + n * x * x + 2 * x * (suma1 - sumb1) - 2 * mx); } cout << ans << "\n" ; return 0 ; }
题意
记一个子段 \([l,r]\) 的 \(k\) 阶子段和为 \(sum_{k,l,r}\) ,有 \(sum_{k,l,r} =
\begin{cases}\sum_{i=l}^ra_i,&k=1\\\sum_{i=l}^r\sum_{j=i}^rsum_{k-1,i,j},&k\ge
2\end{cases}\) 对所有 \(i\in
[1,n]\) ,求 \(sum_{k,1,i}\) 模
998244353。
\(n\le 10^5,k\le 998244353\)
题解
我们不妨考虑单个 \(a_i\)
对答案的贡献:
当 \(k = 1\) 时,只要 \(l\le i\le r\) 就能贡献 1,否则是 0。
当 \(k = 2\) ,需要在 \([l,r]\) 选一个子区间 \([l^\prime,r^\prime]\) ,满足 \(l\le l^\prime\le i\le r^\prime\le r\) 。
当 \(k = 3\) ,需要在 \([l,r]\) 里选两层,即 \(l\le l^\prime\le l^{\prime\prime}\le i\le
{r^{\prime\prime}}\le r^\prime\le r\) 。
考虑枚举 \(r\) 求答案。对于固定的
\(r\) ,等价于在 \(i\) 左侧选择 \(k-1\) 个位置,在 \(i\) 右侧选择 \(k
- 1\) 个位置,二者相乘就是答案,那么可以推导出 \(sum_{k,1,r} = \sum_{i=1}^na_i\dbinom{i + k -
2}{k-1}\dbinom{r + k - i - 1}{k - 1}\) 。因为 \((i + k - 2) + (r + k - i - 1) = r + 2k -
3\) ,为常量,可以考虑卷积。
设 \(f_i = a_i\dbinom{i + k - 2}{k-1},g_i =
\dbinom{i + k - 2}{k-1}\) ,容易发现 \(sum_{k,1,r}\) 就是 \(f_ig_{r-i+1}\) 对应的 \(x^{r+1}\) 项的系数,那么 NTT 即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;constexpr int P = 998244353 ;int power (int a, int b) { int res = 1 ; for (; b; b /= 2 , a = 1LL * a * a % P) { if (b % 2 ) { res = 1LL * res * a % P; } } return res; } std::vector<int > rev, roots{0 , 1 }; void dft (std::vector<int > &a) { int n = a.size (); if ((int )(rev.size ()) != n) { int k = __builtin_ctz(n) - 1 ; rev.resize (n); for (int i = 0 ; i < n; i++) { rev[i] = rev[i >> 1 ] >> 1 | (i & 1 ) << k; } } for (int i = 0 ; i < n; i++) { if (rev[i] < i) { std::swap (a[i], a[rev[i]]); } } if (roots.size () < n) { int k = __builtin_ctz(roots.size ()); roots.resize (n); while ((1 << k) < n) { int e = power (31 , 1 << (__builtin_ctz(P - 1 ) - k - 1 )); for (int i = 1 << (k - 1 ); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1 ] = 1LL * roots[i] * e % P; } k++; } } for (int k = 1 ; k < n; k *= 2 ) { for (int i = 0 ; i < n; i += 2 * k) { for (int j = 0 ; j < k; j++) { int u = a[i + j]; int v = 1LL * a[i + j + k] * roots[k + j] % P; a[i + j] = (u + v) % P; a[i + j + k] = (u - v + P) % P; } } } } void idft (std::vector<int > &a) { int n = a.size (); std::reverse (a.begin () + 1 , a.end ()); dft (a); int inv = power (n, P - 2 ); for (int i = 0 ; i < n; i++) { a[i] = 1LL * a[i] * inv % P; } } std::vector<int > mul (std::vector<int > a, std::vector<int > b) { int n = 1 , tot = a.size () + b.size () - 1 ; while (n < tot) { n *= 2 ; } if (tot < 128 ) { std::vector<int > c (a.size() + b.size() - 1 ) ; for (int i = 0 ; i < a.size (); i++) { for (int j = 0 ; j < b.size (); j++) { c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % P; } } return c; } a.resize (n); b.resize (n); dft (a); dft (b); for (int i = 0 ; i < n; i++) { a[i] = 1LL * a[i] * b[i] % P; } idft (a); a.resize (tot); return a; } signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int n, k; cin >> n >> k; vector<int > a (n + 1 ) , f (n + 1 ) , g (n + 1 ) ; for (int i = 1 ; i <= n; i++) { cin >> a[i]; } vector<int > inv (n + 1 ) ; inv[1 ] = 1 ; for (int i = 2 ; i <= n; i++) { inv[i] = (P - P / i) * inv[P % i] % P; } f[1 ] = g[1 ] = 1 ; for (int i = 2 ; i <= n; i++) { f[i] = f[i - 1 ] * (i + k - 2 ) % P * inv[i - 1 ] % P; g[i] = f[i]; } for (int i = 1 ; i <= n; i++) { f[i] = f[i] * a[i] % P; } auto ans = mul (f, g); for (int i = 2 ; i <= n + 1 ; i++) { cout << ans[i] << " \n" [i == n + 1 ]; } return 0 ; }
普通生成函数
之前看着生成函数这四个字就有一种害怕感,现在认真来学总算是慢慢会了一些。
普通生成函数(OGF)跟级数有很大相似之处,定义为 \(F(x) =
\sum_{n}a_nx^n\) ,可以是有限项,也可以是无穷项。我们其实并不关心
\(x\) 是什么,而只关注 \(a_n\) ,这里一般是以 0 为起点的。如果 \(a_n\)
有通项公式,那么它的普通生成函数的系数就是通项公式。
一些例子:
序列 \(\{1,2,3\}\) 的普通生成函数是
\(1+2x^2+3x^3\)
序列 \(\{1,1,1,...\}\)
的普通生成函数是 \(\sum_{n\ge
0}x^n\)
序列 \(\{1,2,4,8,16,...\}\)
的普通生成函数是 \(\sum_{n\ge
0}2^nx^n\)
序列 \(\{1,3,5,7,9,...\}\)
的普通生成函数是 \(\sum_{n\ge
0}(2n+1)x^n\)
基本运算
对于两个序列 \(a,b\) 的普通生成函数
\(F(x), G(x)\) ,那么 \(F(x) \pm G(x) = \sum_n(a_n\pm
b_n)x^n\) 。换句话说,\(F(x) \pm
G(x)\) 是序列 \(a_n\pm b_n\)
的生成函数。
对于乘法运算,也就是卷积,\(F(x)G(x) =
\sum_nx^n\sum_{i=0}^na_ib_{n-i}\) ,因此 \(F(x)G(x)\) 是序列 \(\sum_{i=0}^na_ib_{n-i}\)
的普通生成函数。因此,我们想求卷积,如果能够求出它们的系数,可以转化为多项式乘法。
封闭形式
我们并不是总是使用求和形式的生成函数,有时又会使用封闭形式,这样更方便化简。这里的化简需要我们利用一些定理或公式,比如二项式定理、等比数列求和公式、求导和积分等。更常见的是,对于无穷项的生成函数,我们得到一个递推公式来解方程。
注意这里牛顿二项式定理的 \(r\)
可以是在复数域下,\(\begin{pmatrix}r\\k\end{pmatrix} =
\dfrac{r^{\underline{k}}}{k!}\) ,\((1+x)^\alpha = \sum_{n\ge
0}\begin{pmatrix}\alpha\\n\end{pmatrix}x^n\) 。
例如,求 \(\{1,1,1,...\}\)
的普通生成函数 \(F(x) = \sum_{n\ge
0}x^n\) 。注意到 \(xF(x)\)
就是把每一项乘上 \(x\) ,相当于向右移动一位,这样就相对于 \(F(x)\) 差了 \(x^0\) 所在的一项,那么 \(xF(x) + 1 = F(x)\) ,我们可以解出 \(F(x) = \dfrac{1}{1-x}\) 。
同理,对于等比数列 \(\{1,p,p^2,p^3,...\}\) ,生成函数 \(F(x) = \sum_{n\ge 0}p^nx^n\) ,\(xpF(x) + 1 = F(x)\) ,那么 \(F(x) = \dfrac{1}{1-px}\) 。
题意
给定一个长为 \(n\) 的序列 \(a\) ,求出其 \(k\) 阶前缀和或差分,对 1004535809
取模。
\(n\le 10^5,a_i\le 10^9,k\le
10^{2333},k\not\equiv 0\pmod {1004535809}\)
题解
考虑序列 \(\{a_0,a_1,...\}\) ,它对应的 OGF 是 \(F(x)\) 。我们设它的前缀和序列为 \(\{b_0,b_1,...\}\) ,我们知道 \(b_i = \sum_{j=0}^ia_j =
\sum_{j+k=i}a_jc_{i-j}\) ,其中 \(c_i =
1\) ,那么我们可以发现,求一次前缀和就是与一个全 1 序列做卷积,而
\(\sum_{i\ge0}x^i =
\dfrac{1}{1-x}\) ,也就是说,求一次前缀和,就是对 \(F(x)\) 乘一个 \(\dfrac{1}{1-x}\) 。
而差分满足 \(b_i = a_i -
a_{i-1}\) ,写成生成函数就是 \(\sum_{i\ge 0}b_ix^i = \sum_{i\ge 0}(a_i -
a_{i-1})x^i = F(x) - xF(x) = (1-x)F(x)\) ,那么求一次差分就是对
\(F(x)\) 乘一个 \(1-x\) 。
因此前缀和和差分的答案分别是 \(\dfrac{F(x)}{(1-x)^k}\) 和 \(F(x)(1-x)^k\) ,可以通过多项式求逆,\(k\) 次幂,多项式乘法计算,时间复杂度 \(O(n(\log n + \log k))\) ,不过常数巨大,会
TLE。
考虑换种方式求系数,先考虑差分。我们设 \(G(x) = (1-x)^k = \sum_{i\ge
0}(-1)^i\begin{pmatrix}k\\i\end{pmatrix}x^i\) ,虽然 \(k\) 非常大,但是有递推关系 \(\begin{pmatrix}k\\0\end{pmatrix} =
1,\begin{pmatrix}k\\i\end{pmatrix} =
\begin{pmatrix}k\\i-1\end{pmatrix}\times
\dfrac{k-i+1}{i}\) ,可以求出 \(G(x)\) 每一项的系数,再与 \(F(x)\)
进行多项式乘法即可知道卷积的结果。
再考虑前缀和,广义二项式定理有 $(1-x)^{-k} = _{i}(-1)^i
\[\begin{pmatrix}-k\\i\end{pmatrix}\]
x^i
\(,注意组合数学有个重要的性质(上指标反转):\)
\[\begin{pmatrix}r\\k\end{pmatrix}\]
= (-1)^k
\[\begin{pmatrix}k-r-1\\k\end{pmatrix}\]
$,那么 \((1-x)^{-k} = \sum_{i\ge
0}\begin{pmatrix}i+k-1\\i\end{pmatrix}x^i\) ,里面的组合数仍然可以递推,多项式乘法即可。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;constexpr int P = 1004535809 ;constexpr int g = 3 ;int power (int a, int b) { int res = 1 ; for (; b; b /= 2 , a = 1LL * a * a % P) { if (b % 2 ) { res = 1LL * res * a % P; } } return res; } std::vector<int > rev, roots{0 , 1 }; void dft (std::vector<int > &a) { int n = a.size (); if ((int )(rev.size ()) != n) { int k = __builtin_ctz(n) - 1 ; rev.resize (n); for (int i = 0 ; i < n; i++) { rev[i] = rev[i >> 1 ] >> 1 | (i & 1 ) << k; } } for (int i = 0 ; i < n; i++) { if (rev[i] < i) { std::swap (a[i], a[rev[i]]); } } if (roots.size () < n) { int k = __builtin_ctz(roots.size ()); roots.resize (n); while ((1 << k) < n) { int e = power (g, (P - 1 ) >> (k + 1 )); for (int i = 1 << (k - 1 ); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1 ] = 1LL * roots[i] * e % P; } k++; } } for (int k = 1 ; k < n; k *= 2 ) { for (int i = 0 ; i < n; i += 2 * k) { for (int j = 0 ; j < k; j++) { int u = a[i + j]; int v = 1LL * a[i + j + k] * roots[k + j] % P; a[i + j] = (u + v) % P; a[i + j + k] = (u - v + P) % P; } } } } void idft (std::vector<int > &a) { int n = a.size (); std::reverse (a.begin () + 1 , a.end ()); dft (a); int inv = power (n, P - 2 ); for (int i = 0 ; i < n; i++) { a[i] = 1LL * a[i] * inv % P; } } std::vector<int > mul (std::vector<int > a, std::vector<int > b) { int n = 1 , tot = a.size () + b.size () - 1 ; while (n < tot) { n *= 2 ; } if (tot < 128 ) { std::vector<int > c (a.size() + b.size() - 1 ) ; for (int i = 0 ; i < a.size (); i++) { for (int j = 0 ; j < b.size (); j++) { c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % P; } } return c; } a.resize (n); b.resize (n); dft (a); dft (b); for (int i = 0 ; i < n; i++) { a[i] = 1LL * a[i] * b[i] % P; } idft (a); a.resize (tot); return a; } int read () { string s; cin >> s; int x = 0 ; for (auto c : s) { x *= 10 ; x += (c - '0' ); x %= P; } return x; } signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int n, k, t; cin >> n; k = read (); cin >> t; vector<int > a (n + 1 ) ; for (int i = 1 ; i <= n; i++) { cin >> a[i]; } vector<int > inv (n + 1 ) ; inv[1 ] = 1 ; for (int i = 2 ; i <= n; i++) { inv[i] = (P - P / i) * inv[P % i] % P; } if (t == 0 ) { vector<int > g (n + 1 ) ; g[0 ] = 1 ; for (int i = 1 ; i <= n; i++) { g[i] = g[i - 1 ] * (i + k - 1 ) % P * inv[i] % P; } auto c = mul (a, g); for (int i = 1 ; i <= n; i++) { cout << c[i] << " \n" [i == n]; } } else { vector<int > g (n + 1 ); g[0 ] = 1 ; for (int i = 1 ; i <= n; i++) { g[i] = (-g[i - 1 ] * inv[i] % P * (k - i + 1 ) % P + P) % P; } auto c = mul (a, g); for (int i = 1 ; i <= n; i++) { cout << c[i] << " \n" [i == n]; } } return 0 ; }
题意
\(n\)
个不同的球排成一排,定义一个组可以只包含一个球,或者包含两个相邻的球,一个球只能分在一组里(可以不分配),求将这
\(n\) 个球分成 \(k\) 组的方案数。
\(n\le 10^9,k < 2^{15}\)
题解
先列出朴素的递推关系,设 \(f_{i,j}\)
表示将前 \(i\) 个球分成 \(j\) 组的方案数,那么对于第 \(i\)
个球,它可以自成一组,可以不放入任何一组,也可以和第 \(i - 1\) 个球组成一组,那么 \(f_{i,j} = f_{i-1,j-1} + f_{i-1,j} +
f_{i-2,j-1}\) 。
考虑用生成函数处理递推关系,我们设 \(F_i(x)
= \sum_{j=0}^kf_jx^j\) ,那么转移可以写成 \(F_i(x) = xF_{i-1}(x)+F_{i-1}(x) +
xF_{i-2}(x)\) 。即 \(F_i(x) =
(1+x)F_{i-1}(x) +
xF_{i-2}(x)\) ,这个递推式可以通过矩阵快速幂加速优化,即 \(\begin{bmatrix}F_n\,F_{n-1}\end{bmatrix}\begin{bmatrix}1+x&1\\x&0\end{bmatrix}
=
\begin{bmatrix}F_{n+1}\,F_{n}\end{bmatrix}\) 。我们将矩阵的元素设为多项式就可以
\(O(k\log k\log n)\)
进行计算,要注意多项式乘积时要时刻取模 \(x^{k+1}\) 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;template <class T >constexpr T power (T a, i64 b) { T res = 1 ; for (; b; b /= 2 , a *= a) { if (b % 2 ) { res *= a; } } return res; } constexpr i64 mul (i64 a, i64 b, i64 p) { i64 res = a * b - i64 (1.L * a * b / p) * p; res %= p; if (res < 0 ) { res += p; } return res; } template <int P>struct MInt { int x; constexpr MInt () : x{ } {} constexpr MInt (i64 x) : x{norm (x % getMod ())} {} static int Mod; constexpr static int getMod () { if (P > 0 ) { return P; } else { return Mod; } } constexpr static void setMod (int Mod_) { Mod = Mod_; } constexpr int norm (int x) const { if (x < 0 ) { x += getMod (); } if (x >= getMod ()) { x -= getMod (); } return x; } constexpr int val () const { return x; } explicit constexpr operator int () const { return x; } constexpr MInt operator -() const { MInt res; res.x = norm (getMod () - x); return res; } constexpr MInt inv () const { assert (x != 0 ); return power (*this , getMod () - 2 ); } constexpr MInt &operator *=(MInt rhs) & { x = 1LL * x * rhs.x % getMod (); return *this ; } constexpr MInt &operator +=(MInt rhs) & { x = norm (x + rhs.x); return *this ; } constexpr MInt &operator -=(MInt rhs) & { x = norm (x - rhs.x); return *this ; } constexpr MInt &operator /=(MInt rhs) & { return *this *= rhs.inv (); } friend constexpr MInt operator *(MInt lhs, MInt rhs) { MInt res = lhs; res *= rhs; return res; } friend constexpr MInt operator +(MInt lhs, MInt rhs) { MInt res = lhs; res += rhs; return res; } friend constexpr MInt operator -(MInt lhs, MInt rhs) { MInt res = lhs; res -= rhs; return res; } friend constexpr MInt operator /(MInt lhs, MInt rhs) { MInt res = lhs; res /= rhs; return res; } friend constexpr std::istream &operator >>(std::istream &is, MInt &a) { i64 v; is >> v; a = MInt (v); return is; } friend constexpr std::ostream &operator <<(std::ostream &os, const MInt &a) { return os << a.val (); } friend constexpr bool operator ==(MInt lhs, MInt rhs) { return lhs.val () == rhs.val (); } friend constexpr bool operator !=(MInt lhs, MInt rhs) { return lhs.val () != rhs.val (); } }; template <>int MInt<0 >::Mod = 998244353 ;template <int V, int P>constexpr MInt<P> CInv = MInt <P>(V).inv ();constexpr int P = 998244353 ;using Z = MInt<P>; using D = MInt<0 >; std::vector<int > rev; std::vector<Z> roots{0 , 1 }; void dft (std::vector<Z> &a) { int n = a.size (); if ((int )(rev.size ()) != n) { int k = __builtin_ctz(n) - 1 ; rev.resize (n); for (int i = 0 ; i < n; i++) { rev[i] = rev[i >> 1 ] >> 1 | (i & 1 ) << k; } } for (int i = 0 ; i < n; i++) { if (rev[i] < i) { std::swap (a[i], a[rev[i]]); } } if ((int )(roots.size ()) < n) { int k = __builtin_ctz(roots.size ()); roots.resize (n); while ((1 << k) < n) { Z e = power (Z (3 ), (P - 1 ) >> (k + 1 )); for (int i = 1 << (k - 1 ); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1 ] = roots[i] * e; } k++; } } for (int k = 1 ; k < n; k *= 2 ) { for (int i = 0 ; i < n; i += 2 * k) { for (int j = 0 ; j < k; j++) { Z u = a[i + j]; Z v = a[i + j + k] * roots[k + j]; a[i + j] = u + v; a[i + j + k] = u - v; } } } } void idft (std::vector<Z> &a) { int n = a.size (); std::reverse (a.begin () + 1 , a.end ()); dft (a); Z inv = (1 - P) / n; for (int i = 0 ; i < n; i++) { a[i] *= inv; } } struct Poly { std::vector<Z> a; Poly () {} explicit Poly ( int size, std::function<Z(int )> f = [](int ) { return 0 ; }) : a(size) { for (int i = 0 ; i < size; i++) { a[i] = f (i); } } Poly (const std::vector<Z> &a) : a (a) {} Poly (const std::initializer_list<Z> &a) : a (a) {} int size () const { return a.size (); } void resize (int n) { a.resize (n); } Z operator [](int idx) const { if (idx < size ()) { return a[idx]; } else { return 0 ; } } Z &operator [](int idx) { return a[idx]; } Poly mulxk (int k) const { auto b = a; b.insert (b.begin (), k, 0 ); return Poly (b); } Poly modxk (int k) const { k = std::min (k, size ()); return Poly (std::vector <Z>(a.begin (), a.begin () + k)); } Poly divxk (int k) const { if (size () <= k) { return Poly (); } return Poly (std::vector <Z>(a.begin () + k, a.end ())); } friend Poly operator +(const Poly &a, const Poly &b) { std::vector<Z> res (std::max(a.size(), b.size())) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = a[i] + b[i]; } return Poly (res); } friend Poly operator -(const Poly &a, const Poly &b) { std::vector<Z> res (std::max(a.size(), b.size())) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = a[i] - b[i]; } return Poly (res); } friend Poly operator -(const Poly &a) { std::vector<Z> res (a.size()) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = -a[i]; } return Poly (res); } friend Poly operator *(Poly a, Poly b) { if (a.size () == 0 || b.size () == 0 ) { return Poly (); } if (a.size () < b.size ()) { std::swap (a, b); } if (b.size () < 128 ) { Poly c (a.size() + b.size() - 1 ) ; for (int i = 0 ; i < a.size (); i++) { for (int j = 0 ; j < b.size (); j++) { c[i + j] += a[i] * b[j]; } } return c; } int sz = 1 , tot = a.size () + b.size () - 1 ; while (sz < tot) { sz *= 2 ; } a.a.resize (sz); b.a.resize (sz); dft (a.a); dft (b.a); for (int i = 0 ; i < sz; ++i) { a.a[i] = a[i] * b[i]; } idft (a.a); a.resize (tot); return a; } friend Poly operator *(Z a, Poly b) { for (int i = 0 ; i < (int )(b.size ()); i++) { b[i] *= a; } return b; } friend Poly operator *(Poly a, Z b) { for (int i = 0 ; i < (int )(a.size ()); i++) { a[i] *= b; } return a; } Poly &operator +=(Poly b) { return (*this ) = (*this ) + b; } Poly &operator -=(Poly b) { return (*this ) = (*this ) - b; } Poly &operator *=(Poly b) { return (*this ) = (*this ) * b; } Poly &operator *=(Z b) { return (*this ) = (*this ) * b; } Poly deriv () const { if (a.empty ()) { return Poly (); } std::vector<Z> res (size() - 1 ) ; for (int i = 0 ; i < size () - 1 ; ++i) { res[i] = (i + 1 ) * a[i + 1 ]; } return Poly (res); } Poly integr () const { std::vector<Z> res (size() + 1 ) ; for (int i = 0 ; i < size (); ++i) { res[i + 1 ] = a[i] / (i + 1 ); } return Poly (res); } Poly inv (int m) const { Poly x{a[0 ].inv ()}; int k = 1 ; while (k < m) { k *= 2 ; x = (x * (Poly{2 } - modxk (k) * x)).modxk (k); } return x.modxk (m); } Poly log (int m) const { return (deriv () * inv (m)).integr ().modxk (m); } Poly exp (int m) const { Poly x{1 }; int k = 1 ; while (k < m) { k *= 2 ; x = (x * (Poly{1 } - x.log (k) + modxk (k))).modxk (k); } return x.modxk (m); } Poly pow (int k, int m) const { int i = 0 ; while (i < size () && a[i].val () == 0 ) { i++; } if (i == size () || 1LL * i * k >= m) { return Poly (std::vector <Z>(m)); } Z v = a[i]; auto f = divxk (i) * v.inv (); return (f.log (m - i * k) * k).exp (m - i * k).mulxk (i * k) * power (v, k); } Poly sqrt (int m) const { Poly x{1 }; int k = 1 ; while (k < m) { k *= 2 ; x = (x + (modxk (k) * x.inv (k)).modxk (k)) * ((P + 1 ) / 2 ); } return x.modxk (m); } Poly mulT (Poly b) const { if (b.size () == 0 ) { return Poly (); } int n = b.size (); std::reverse (b.a.begin (), b.a.end ()); return ((*this ) * b).divxk (n - 1 ); } std::vector<Z> eval (std::vector<Z> x) const { if (size () == 0 ) { return std::vector <Z>(x.size (), 0 ); } const int n = std::max ((int )(x.size ()), size ()); std::vector<Poly> q (4 * n) ; std::vector<Z> ans (x.size()) ; x.resize (n); std::function<void (int , int , int )> build = [&](int p, int l, int r) { if (r - l == 1 ) { q[p] = Poly{1 , -x[l]}; } else { int m = (l + r) / 2 ; build (2 * p, l, m); build (2 * p + 1 , m, r); q[p] = q[2 * p] * q[2 * p + 1 ]; } }; build (1 , 0 , n); std::function<void (int , int , int , const Poly &)> work = [&](int p, int l, int r, const Poly &num) { if (r - l == 1 ) { if (l < (int )(ans.size ())) { ans[l] = num[0 ]; } } else { int m = (l + r) / 2 ; work (2 * p, l, m, num.mulT (q[2 * p + 1 ]).modxk (m - l)); work (2 * p + 1 , m, r, num.mulT (q[2 * p]).modxk (r - m)); } }; work (1 , 0 , n, mulT (q[1 ].inv (n))); return ans; } }; int len;struct Matrix { int n; vector<vector<Poly>> a; Matrix () {} Matrix (int n) : n (n) { a.assign (n, vector <Poly>(n)); } vector<Poly> &operator [](int row) { return a[row]; } const vector<Poly> &operator [](int row) const { return a[row]; } Matrix operator *(const Matrix &b) const { Matrix res (n) ; for (int i = 0 ; i < n; i++) { for (int j = 0 ; j < n; j++) { for (int k = 0 ; k < n; k++) { res[i][j] = (res[i][j] + a[i][k] * b[k][j]).modxk (len + 1 ); } } } return res; } Matrix &operator *=(const Matrix &b) { *this = *this * b; return *this ; } Matrix power (int b) { Matrix res (n) ; auto A = *this ; for (int i = 0 ; i < n; i++) { res[i][i] = {1 }; } while (b) { if (b & 1 ) { res = res * A; } A *= A; b /= 2 ; } return res; } }; signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int n, k; cin >> n >> k; len = k; Matrix A (2 ) , B (2 ) ; A[0 ][0 ] = {1 , 1 }, A[0 ][1 ] = {1 }; B[0 ][0 ] = {1 , 1 }; B[0 ][1 ] = {1 }; B[1 ][0 ] = {0 , 1 }; B[1 ][1 ] = {0 }; auto res = A * B.power (n - 1 ); for (int i = 1 ; i <= k; i++) { cout << (i < res[0 ][0 ].size () ? res[0 ][0 ][i] : 0 ) << " \n" [i == k]; } return 0 ; }
题意
\(n\) 个物品体积是 \(v_i\) 。给定 \(m\) ,对于 \(s\in[1,m]\) 回答用这些物品恰好装 \(s\) 体积的方案数,模 998244353。
\(n,m\le 10^5\)
题解
数据范围限制了我们使用 dp。对于单个体积为 \(v\) 的物品我们可以构造生成函数 \(A(x) = \sum\limits_{i=0}^\infin[i\equiv0\pmod
v]x^i\) ,含义是只有 \(i\) 为
\(k\) 的倍数时才有 1
个方案,否则没有。那么 \(n\) 个物品就是
\(F(x) =
\prod\limits_{i=1}^nA_i(x)\) ,复杂度 \(O(nm\log m)\) 。
考虑优化,上面是多项式的乘积,转化为对数是很自然的想法,有一个重要的结论:\(\ln(1-x^v) = -\sum\limits_{i\ge
1}\dfrac{x^{vi}}{i}\) ,在末尾给出证明。
那么 \(F(x) = e^{\ln F(x)} =
e^{\sum_\limits{i=1}^n\sum\limits_{j\ge
1}\frac{x^{v_ij}}{j}}\) 。指数作为多项式求 exp
即可。然而指数直接进行加法也是 \(O(nm)\) 的,所以我们把 \(v_i\)
相同的打包在一起计算,这样的复杂度是调和级数 \(O(m\log m)\) 。
给出 \(\ln(1-x^v) = -\sum\limits_{i\ge
1}\dfrac{x^{vi}}{i}\) 的证明:
设 \(F(x) = 1-x^v\) ,\(\ln F(x) = G(x)\) 。两边求导有 \(\dfrac{F^\prime(x)}{F(x)} =
\dfrac{-vx^{v-1}}{1-x^v} =G^\prime(x)\) ,将 \(\dfrac{1}{1-x^v}\) 展开为级数有:
\(G^\prime(x) =
\sum\limits_{i=0}^\infin-vx^{v-1}x^{vi}= -\sum\limits_{i=0}^\infin
vx^NaN\) ,那么积分后得到\(G(x) =
-\sum_{i=0}\limits^\infty\dfrac{x^{v(1+i)}}{1+i} = -\sum_\limits{i\ge
1}\dfrac{x^{vi}}{i}\) 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;template <class T >constexpr T power (T a, i64 b) { T res = 1 ; for (; b; b /= 2 , a *= a) { if (b % 2 ) { res *= a; } } return res; } constexpr i64 mul (i64 a, i64 b, i64 p) { i64 res = a * b - i64 (1.L * a * b / p) * p; res %= p; if (res < 0 ) { res += p; } return res; } template <int P>struct MInt { int x; constexpr MInt () : x{ } {} constexpr MInt (i64 x) : x{norm (x % getMod ())} {} static int Mod; constexpr static int getMod () { if (P > 0 ) { return P; } else { return Mod; } } constexpr static void setMod (int Mod_) { Mod = Mod_; } constexpr int norm (int x) const { if (x < 0 ) { x += getMod (); } if (x >= getMod ()) { x -= getMod (); } return x; } constexpr int val () const { return x; } explicit constexpr operator int () const { return x; } constexpr MInt operator -() const { MInt res; res.x = norm (getMod () - x); return res; } constexpr MInt inv () const { assert (x != 0 ); return power (*this , getMod () - 2 ); } constexpr MInt &operator *=(MInt rhs) & { x = 1LL * x * rhs.x % getMod (); return *this ; } constexpr MInt &operator +=(MInt rhs) & { x = norm (x + rhs.x); return *this ; } constexpr MInt &operator -=(MInt rhs) & { x = norm (x - rhs.x); return *this ; } constexpr MInt &operator /=(MInt rhs) & { return *this *= rhs.inv (); } friend constexpr MInt operator *(MInt lhs, MInt rhs) { MInt res = lhs; res *= rhs; return res; } friend constexpr MInt operator +(MInt lhs, MInt rhs) { MInt res = lhs; res += rhs; return res; } friend constexpr MInt operator -(MInt lhs, MInt rhs) { MInt res = lhs; res -= rhs; return res; } friend constexpr MInt operator /(MInt lhs, MInt rhs) { MInt res = lhs; res /= rhs; return res; } friend constexpr std::istream &operator >>(std::istream &is, MInt &a) { i64 v; is >> v; a = MInt (v); return is; } friend constexpr std::ostream &operator <<(std::ostream &os, const MInt &a) { return os << a.val (); } friend constexpr bool operator ==(MInt lhs, MInt rhs) { return lhs.val () == rhs.val (); } friend constexpr bool operator !=(MInt lhs, MInt rhs) { return lhs.val () != rhs.val (); } }; template <>int MInt<0 >::Mod = 998244353 ;template <int V, int P>constexpr MInt<P> CInv = MInt <P>(V).inv ();constexpr int P = 998244353 ;using Z = MInt<P>; using D = MInt<0 >; std::vector<int > rev; std::vector<Z> roots{0 , 1 }; void dft (std::vector<Z> &a) { int n = a.size (); if ((int )(rev.size ()) != n) { int k = __builtin_ctz(n) - 1 ; rev.resize (n); for (int i = 0 ; i < n; i++) { rev[i] = rev[i >> 1 ] >> 1 | (i & 1 ) << k; } } for (int i = 0 ; i < n; i++) { if (rev[i] < i) { std::swap (a[i], a[rev[i]]); } } if ((int )(roots.size ()) < n) { int k = __builtin_ctz(roots.size ()); roots.resize (n); while ((1 << k) < n) { Z e = power (Z (3 ), (P - 1 ) >> (k + 1 )); for (int i = 1 << (k - 1 ); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1 ] = roots[i] * e; } k++; } } for (int k = 1 ; k < n; k *= 2 ) { for (int i = 0 ; i < n; i += 2 * k) { for (int j = 0 ; j < k; j++) { Z u = a[i + j]; Z v = a[i + j + k] * roots[k + j]; a[i + j] = u + v; a[i + j + k] = u - v; } } } } void idft (std::vector<Z> &a) { int n = a.size (); std::reverse (a.begin () + 1 , a.end ()); dft (a); Z inv = (1 - P) / n; for (int i = 0 ; i < n; i++) { a[i] *= inv; } } struct Poly { std::vector<Z> a; Poly () {} explicit Poly ( int size, std::function<Z(int )> f = [](int ) { return 0 ; }) : a(size) { for (int i = 0 ; i < size; i++) { a[i] = f (i); } } Poly (const std::vector<Z> &a) : a (a) {} Poly (const std::initializer_list<Z> &a) : a (a) {} int size () const { return a.size (); } void resize (int n) { a.resize (n); } Z operator [](int idx) const { if (idx < size ()) { return a[idx]; } else { return 0 ; } } Z &operator [](int idx) { return a[idx]; } Poly mulxk (int k) const { auto b = a; b.insert (b.begin (), k, 0 ); return Poly (b); } Poly modxk (int k) const { k = std::min (k, size ()); return Poly (std::vector <Z>(a.begin (), a.begin () + k)); } Poly divxk (int k) const { if (size () <= k) { return Poly (); } return Poly (std::vector <Z>(a.begin () + k, a.end ())); } friend Poly operator +(const Poly &a, const Poly &b) { std::vector<Z> res (std::max(a.size(), b.size())) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = a[i] + b[i]; } return Poly (res); } friend Poly operator -(const Poly &a, const Poly &b) { std::vector<Z> res (std::max(a.size(), b.size())) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = a[i] - b[i]; } return Poly (res); } friend Poly operator -(const Poly &a) { std::vector<Z> res (a.size()) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = -a[i]; } return Poly (res); } friend Poly operator *(Poly a, Poly b) { if (a.size () == 0 || b.size () == 0 ) { return Poly (); } if (a.size () < b.size ()) { std::swap (a, b); } if (b.size () < 128 ) { Poly c (a.size() + b.size() - 1 ) ; for (int i = 0 ; i < a.size (); i++) { for (int j = 0 ; j < b.size (); j++) { c[i + j] += a[i] * b[j]; } } return c; } int sz = 1 , tot = a.size () + b.size () - 1 ; while (sz < tot) { sz *= 2 ; } a.a.resize (sz); b.a.resize (sz); dft (a.a); dft (b.a); for (int i = 0 ; i < sz; ++i) { a.a[i] = a[i] * b[i]; } idft (a.a); a.resize (tot); return a; } friend Poly operator *(Z a, Poly b) { for (int i = 0 ; i < (int )(b.size ()); i++) { b[i] *= a; } return b; } friend Poly operator *(Poly a, Z b) { for (int i = 0 ; i < (int )(a.size ()); i++) { a[i] *= b; } return a; } Poly &operator +=(Poly b) { return (*this ) = (*this ) + b; } Poly &operator -=(Poly b) { return (*this ) = (*this ) - b; } Poly &operator *=(Poly b) { return (*this ) = (*this ) * b; } Poly &operator *=(Z b) { return (*this ) = (*this ) * b; } Poly deriv () const { if (a.empty ()) { return Poly (); } std::vector<Z> res (size() - 1 ) ; for (int i = 0 ; i < size () - 1 ; ++i) { res[i] = (i + 1 ) * a[i + 1 ]; } return Poly (res); } Poly integr () const { std::vector<Z> res (size() + 1 ) ; for (int i = 0 ; i < size (); ++i) { res[i + 1 ] = a[i] / (i + 1 ); } return Poly (res); } Poly inv (int m) const { Poly x{a[0 ].inv ()}; int k = 1 ; while (k < m) { k *= 2 ; x = (x * (Poly{2 } - modxk (k) * x)).modxk (k); } return x.modxk (m); } Poly log (int m) const { return (deriv () * inv (m)).integr ().modxk (m); } Poly exp (int m) const { Poly x{1 }; int k = 1 ; while (k < m) { k *= 2 ; x = (x * (Poly{1 } - x.log (k) + modxk (k))).modxk (k); } return x.modxk (m); } Poly pow (int k, int m) const { int i = 0 ; while (i < size () && a[i].val () == 0 ) { i++; } if (i == size () || 1LL * i * k >= m) { return Poly (std::vector <Z>(m)); } Z v = a[i]; auto f = divxk (i) * v.inv (); return (f.log (m - i * k) * k).exp (m - i * k).mulxk (i * k) * power (v, k); } Poly sqrt (int m) const { Poly x{1 }; int k = 1 ; while (k < m) { k *= 2 ; x = (x + (modxk (k) * x.inv (k)).modxk (k)) * ((P + 1 ) / 2 ); } return x.modxk (m); } Poly mulT (Poly b) const { if (b.size () == 0 ) { return Poly (); } int n = b.size (); std::reverse (b.a.begin (), b.a.end ()); return ((*this ) * b).divxk (n - 1 ); } std::vector<Z> eval (std::vector<Z> x) const { if (size () == 0 ) { return std::vector <Z>(x.size (), 0 ); } const int n = std::max ((int )(x.size ()), size ()); std::vector<Poly> q (4 * n) ; std::vector<Z> ans (x.size()) ; x.resize (n); std::function<void (int , int , int )> build = [&](int p, int l, int r) { if (r - l == 1 ) { q[p] = Poly{1 , -x[l]}; } else { int m = (l + r) / 2 ; build (2 * p, l, m); build (2 * p + 1 , m, r); q[p] = q[2 * p] * q[2 * p + 1 ]; } }; build (1 , 0 , n); std::function<void (int , int , int , const Poly &)> work = [&](int p, int l, int r, const Poly &num) { if (r - l == 1 ) { if (l < (int )(ans.size ())) { ans[l] = num[0 ]; } } else { int m = (l + r) / 2 ; work (2 * p, l, m, num.mulT (q[2 * p + 1 ]).modxk (m - l)); work (2 * p + 1 , m, r, num.mulT (q[2 * p]).modxk (r - m)); } }; work (1 , 0 , n, mulT (q[1 ].inv (n))); return ans; } }; signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int n, m; cin >> n >> m; vector<int > buk (m + 1 ) ; for (int i = 1 ; i <= n; i++) { int v; cin >> v; buk[v]++; } vector<int > inv (m + 1 ) ; inv[1 ] = 1 ; for (int i = 2 ; i <= m; i++) { inv[i] = (P - P / i) * inv[P % i] % P; } vector<Z> a (m + 1 ) ; for (int i = 1 ; i <= m; i++) { if (buk[i]) { for (int j = i; j <= m; j += i) { a[j] += Z (inv[j / i]) * buk[i]; } } } Poly p (a) ; p = p.exp (m + 1 ); for (int i = 1 ; i <= m; i++) { cout << p[i] << "\n" ; } return 0 ; }
题意
\(n\) 个球,\(m\) 个盒子,在以下条件下计数,模
998244353:
I:球之间互不相同,盒子之间互不相同。
II:球之间互不相同,盒子之间互不相同,每个盒子至多装一个球。
III:球之间互不相同,盒子之间互不相同,每个盒子至少装一个球。
IV:球之间互不相同,盒子全部相同。
V:球之间互不相同,盒子全部相同,每个盒子至多装一个球。
VI:球之间互不相同,盒子全部相同,每个盒子至少装一个球。
VII:球全部相同,盒子之间互不相同。
VIII:球全部相同,盒子之间互不相同,每个盒子至多装一个球。
IX:球全部相同,盒子之间互不相同,每个盒子至少装一个球。
X:球全部相同,盒子全部相同。
XI:球全部相同,盒子全部相同,每个盒子至多装一个球。
XII:球全部相同,盒子全部相同,每个盒子至少装一个球。
\(n,m\le 2\times 10^5\)
题解
球不同,盒子不同,无限制:每个球都能放到任意盒子中,\(m^n\) 。
球不同,盒子不同,每个盒子至多 1
个球:每个球找一个没放过的盒子放进去,\(m^{\underline{n}}\) 。
球不同,盒子不同,每个盒子至少 1 个球:考虑容斥,设 \(f(S)\) 代表集合 \(S\) 中的盒子不放球的方案数,那么有 \(f(S) = (m - |S|)^n\) ,且 \(f(S) =\sum_{S\subseteq T}\limits
g(T)\) ,根据二项式反演,\(g(S) =
\sum_{S\subseteq T}\limits(-1)^{|T|-|S|}f(T)\) ,答案是 \(g(\varnothing) =
\sum_{i=0}^m(-1)^i\dbinom{m}{i}(m-i)^n\) 。
球不同,盒子同,无限制:盒子相同要想到斯特林数,答案就是 \(\sum_{i=1}^m\left\{\begin{matrix}n\\i\end{matrix}\right\}\) 。求一行斯特林数通过斯特林数的卷积公式来求。
球不同,盒子同,每个盒子至多 1
个球:每个球放哪个盒子都是一样的,答案就是 \([n\le m]\) 。
球不同,盒子同,每个盒子至少 1
个球:根据第二类斯特林数的定义,答案就是 \(\left\{\begin{matrix}n\\m\end{matrix}\right\}\) 。
球同,盒子不同,无限制:球相同要想到插板法,这里分成的 \(m\) 个集合可以为空,那么答案就是 \(\dbinom{n + m - 1}{m - 1}\) 。
球同,盒子不同,每个盒子至多 1 个球:取 \(n\) 个盒子放球,\(\dbinom{m}{n}\)
球同,盒子不同,每个盒子至少 1 个球:插板法,\(\dbinom{n - 1}{m - 1}\) 。
球同,盒子同,无限制:这里需要引入分拆数——将自然数 \(n\) 写成递降正整数的和的方案数 \(p_n\) ,如果将 \(n\) 恰好分成 \(k\) 部分,就叫做 \(k\) 部分拆数 \(p_{n,k}\) 。显然 \(k\) 部分拆数也是方程 \(n - k = y_1 + y_2+...+y_k,y_1\ge y_2\ge ...\ge
y_k\ge 0\) 的解的数量。这里我们定义 \(f(n,m)\) 为将整数 \(n\) 划分成不超过 \(m\) 个非负整数的方案数,那么 \(f\) 的转移可以向后面加一个 0,也可以全体加
1,有 \(f(n,m) = f(n - m,m) + f(n, m -
1)\) 。我们令 \(F_k(x) =
\sum_{i=0}^\infty\limits x^if(i,k)\) ,那么 \(F_k(x) = \sum_{i=0}^\infty\limits (x^if(i - k, k)
+ x^if(i, k - 1)) = F_{k-1} + x^kF_{k}\) 。因此 \(F_k(x) = \dfrac{F_{k-1}(x)}{1-x^k}\) ,且
\(F_1(x) = 1 + x + x^2+... = \dfrac{1}{1 -
x}\) ,因此可以推导出 \(F_k(x) =
\prod_{i=1}^k\limits\dfrac{1}{1 -
x^i}\) ,类似付公主的背包求多项式 exp 即可。答案是 \([x^n]F_m(x)\) 。
球同,盒子同,每个盒子至多 1 个球:\([n\le
m]\) 。
球同,盒子同,每个盒子至少 1
个球:先往每个盒子放一个球,那么答案就是 \([x^{n-m}]F_m(x)\) 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;template <class T >constexpr T power (T a, i64 b) { T res = 1 ; for (; b; b /= 2 , a *= a) { if (b % 2 ) { res *= a; } } return res; } constexpr i64 mul (i64 a, i64 b, i64 p) { i64 res = a * b - i64 (1.L * a * b / p) * p; res %= p; if (res < 0 ) { res += p; } return res; } template <int P>struct MInt { int x; constexpr MInt () : x{ } {} constexpr MInt (i64 x) : x{norm (x % getMod ())} {} static int Mod; constexpr static int getMod () { if (P > 0 ) { return P; } else { return Mod; } } constexpr static void setMod (int Mod_) { Mod = Mod_; } constexpr int norm (int x) const { if (x < 0 ) { x += getMod (); } if (x >= getMod ()) { x -= getMod (); } return x; } constexpr int val () const { return x; } explicit constexpr operator int () const { return x; } constexpr MInt operator -() const { MInt res; res.x = norm (getMod () - x); return res; } constexpr MInt inv () const { assert (x != 0 ); return power (*this , getMod () - 2 ); } constexpr MInt &operator *=(MInt rhs) & { x = 1LL * x * rhs.x % getMod (); return *this ; } constexpr MInt &operator +=(MInt rhs) & { x = norm (x + rhs.x); return *this ; } constexpr MInt &operator -=(MInt rhs) & { x = norm (x - rhs.x); return *this ; } constexpr MInt &operator /=(MInt rhs) & { return *this *= rhs.inv (); } friend constexpr MInt operator *(MInt lhs, MInt rhs) { MInt res = lhs; res *= rhs; return res; } friend constexpr MInt operator +(MInt lhs, MInt rhs) { MInt res = lhs; res += rhs; return res; } friend constexpr MInt operator -(MInt lhs, MInt rhs) { MInt res = lhs; res -= rhs; return res; } friend constexpr MInt operator /(MInt lhs, MInt rhs) { MInt res = lhs; res /= rhs; return res; } friend constexpr std::istream &operator >>(std::istream &is, MInt &a) { i64 v; is >> v; a = MInt (v); return is; } friend constexpr std::ostream &operator <<(std::ostream &os, const MInt &a) { return os << a.val (); } friend constexpr bool operator ==(MInt lhs, MInt rhs) { return lhs.val () == rhs.val (); } friend constexpr bool operator !=(MInt lhs, MInt rhs) { return lhs.val () != rhs.val (); } }; template <>int MInt<0 >::Mod = 998244353 ;template <int V, int P>constexpr MInt<P> CInv = MInt <P>(V).inv ();constexpr int P = 998244353 ;using Z = MInt<P>; using D = MInt<0 >; struct Comb { int n; std::vector<Z> _fac; std::vector<Z> _invfac; std::vector<Z> _inv; Comb () : n{0 }, _fac{1 }, _invfac{1 }, _inv{0 } {} Comb (int n) : Comb () { init (n); } void init (int m) { if (m <= n) return ; _fac.resize (m + 1 ); _invfac.resize (m + 1 ); _inv.resize (m + 1 ); for (int i = n + 1 ; i <= m; i++) { _fac[i] = _fac[i - 1 ] * i; } _invfac[m] = _fac[m].inv (); for (int i = m; i > n; i--) { _invfac[i - 1 ] = _invfac[i] * i; _inv[i] = _invfac[i] * _fac[i - 1 ]; } n = m; } Z fac (int m) { if (m > n) init (2 * m); return _fac[m]; } Z invfac (int m) { if (m > n) init (2 * m); return _invfac[m]; } Z inv (int m) { if (m > n) init (2 * m); return _inv[m]; } Z binom (int n, int m) { if (n < m || m < 0 ) return 0 ; return fac (n) * invfac (m) * invfac (n - m); } } comb (200000 ); std::vector<int > rev; std::vector<Z> roots{0 , 1 }; void dft (std::vector<Z> &a) { int n = a.size (); if ((int )(rev.size ()) != n) { int k = __builtin_ctz(n) - 1 ; rev.resize (n); for (int i = 0 ; i < n; i++) { rev[i] = rev[i >> 1 ] >> 1 | (i & 1 ) << k; } } for (int i = 0 ; i < n; i++) { if (rev[i] < i) { std::swap (a[i], a[rev[i]]); } } if ((int )(roots.size ()) < n) { int k = __builtin_ctz(roots.size ()); roots.resize (n); while ((1 << k) < n) { Z e = power (Z (3 ), (P - 1 ) >> (k + 1 )); for (int i = 1 << (k - 1 ); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1 ] = roots[i] * e; } k++; } } for (int k = 1 ; k < n; k *= 2 ) { for (int i = 0 ; i < n; i += 2 * k) { for (int j = 0 ; j < k; j++) { Z u = a[i + j]; Z v = a[i + j + k] * roots[k + j]; a[i + j] = u + v; a[i + j + k] = u - v; } } } } void idft (std::vector<Z> &a) { int n = a.size (); std::reverse (a.begin () + 1 , a.end ()); dft (a); Z inv = (1 - P) / n; for (int i = 0 ; i < n; i++) { a[i] *= inv; } } struct Poly { std::vector<Z> a; Poly () {} explicit Poly ( int size, std::function<Z(int )> f = [](int ) { return 0 ; }) : a(size) { for (int i = 0 ; i < size; i++) { a[i] = f (i); } } Poly (const std::vector<Z> &a) : a (a) {} Poly (const std::initializer_list<Z> &a) : a (a) {} int size () const { return a.size (); } void resize (int n) { a.resize (n); } Z operator [](int idx) const { if (idx < size ()) { return a[idx]; } else { return 0 ; } } Z &operator [](int idx) { return a[idx]; } Poly mulxk (int k) const { auto b = a; b.insert (b.begin (), k, 0 ); return Poly (b); } Poly modxk (int k) const { k = std::min (k, size ()); return Poly (std::vector <Z>(a.begin (), a.begin () + k)); } Poly divxk (int k) const { if (size () <= k) { return Poly (); } return Poly (std::vector <Z>(a.begin () + k, a.end ())); } friend Poly operator +(const Poly &a, const Poly &b) { std::vector<Z> res (std::max(a.size(), b.size())) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = a[i] + b[i]; } return Poly (res); } friend Poly operator -(const Poly &a, const Poly &b) { std::vector<Z> res (std::max(a.size(), b.size())) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = a[i] - b[i]; } return Poly (res); } friend Poly operator -(const Poly &a) { std::vector<Z> res (a.size()) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = -a[i]; } return Poly (res); } friend Poly operator *(Poly a, Poly b) { if (a.size () == 0 || b.size () == 0 ) { return Poly (); } if (a.size () < b.size ()) { std::swap (a, b); } if (b.size () < 128 ) { Poly c (a.size() + b.size() - 1 ) ; for (int i = 0 ; i < a.size (); i++) { for (int j = 0 ; j < b.size (); j++) { c[i + j] += a[i] * b[j]; } } return c; } int sz = 1 , tot = a.size () + b.size () - 1 ; while (sz < tot) { sz *= 2 ; } a.a.resize (sz); b.a.resize (sz); dft (a.a); dft (b.a); for (int i = 0 ; i < sz; ++i) { a.a[i] = a[i] * b[i]; } idft (a.a); a.resize (tot); return a; } friend Poly operator *(Z a, Poly b) { for (int i = 0 ; i < (int )(b.size ()); i++) { b[i] *= a; } return b; } friend Poly operator *(Poly a, Z b) { for (int i = 0 ; i < (int )(a.size ()); i++) { a[i] *= b; } return a; } Poly &operator +=(Poly b) { return (*this ) = (*this ) + b; } Poly &operator -=(Poly b) { return (*this ) = (*this ) - b; } Poly &operator *=(Poly b) { return (*this ) = (*this ) * b; } Poly &operator *=(Z b) { return (*this ) = (*this ) * b; } Poly deriv () const { if (a.empty ()) { return Poly (); } std::vector<Z> res (size() - 1 ) ; for (int i = 0 ; i < size () - 1 ; ++i) { res[i] = (i + 1 ) * a[i + 1 ]; } return Poly (res); } Poly integr () const { std::vector<Z> res (size() + 1 ) ; for (int i = 0 ; i < size (); ++i) { res[i + 1 ] = a[i] / (i + 1 ); } return Poly (res); } Poly inv (int m) const { Poly x{a[0 ].inv ()}; int k = 1 ; while (k < m) { k *= 2 ; x = (x * (Poly{2 } - modxk (k) * x)).modxk (k); } return x.modxk (m); } Poly log (int m) const { return (deriv () * inv (m)).integr ().modxk (m); } Poly exp (int m) const { Poly x{1 }; int k = 1 ; while (k < m) { k *= 2 ; x = (x * (Poly{1 } - x.log (k) + modxk (k))).modxk (k); } return x.modxk (m); } Poly pow (int k, int m) const { int i = 0 ; while (i < size () && a[i].val () == 0 ) { i++; } if (i == size () || 1LL * i * k >= m) { return Poly (std::vector <Z>(m)); } Z v = a[i]; auto f = divxk (i) * v.inv (); return (f.log (m - i * k) * k).exp (m - i * k).mulxk (i * k) * power (v, k); } Poly sqrt (int m) const { Poly x{1 }; int k = 1 ; while (k < m) { k *= 2 ; x = (x + (modxk (k) * x.inv (k)).modxk (k)) * ((P + 1 ) / 2 ); } return x.modxk (m); } Poly mulT (Poly b) const { if (b.size () == 0 ) { return Poly (); } int n = b.size (); std::reverse (b.a.begin (), b.a.end ()); return ((*this ) * b).divxk (n - 1 ); } std::vector<Z> eval (std::vector<Z> x) const { if (size () == 0 ) { return std::vector <Z>(x.size (), 0 ); } const int n = std::max ((int )(x.size ()), size ()); std::vector<Poly> q (4 * n) ; std::vector<Z> ans (x.size()) ; x.resize (n); std::function<void (int , int , int )> build = [&](int p, int l, int r) { if (r - l == 1 ) { q[p] = Poly{1 , -x[l]}; } else { int m = (l + r) / 2 ; build (2 * p, l, m); build (2 * p + 1 , m, r); q[p] = q[2 * p] * q[2 * p + 1 ]; } }; build (1 , 0 , n); std::function<void (int , int , int , const Poly &)> work = [&](int p, int l, int r, const Poly &num) { if (r - l == 1 ) { if (l < (int )(ans.size ())) { ans[l] = num[0 ]; } } else { int m = (l + r) / 2 ; work (2 * p, l, m, num.mulT (q[2 * p + 1 ]).modxk (m - l)); work (2 * p + 1 , m, r, num.mulT (q[2 * p]).modxk (r - m)); } }; work (1 , 0 , n, mulT (q[1 ].inv (n))); return ans; } }; signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); vector<Z> inv (2e5 + 1 ) ; inv[1 ] = 1 ; for (int i = 2 ; i <= 2e5 ; i++) { inv[i] = (P - P / i) * inv[P % i]; } int n, m; cin >> n >> m; cout << power (Z (m), n) << "\n" ; cout << (n <= m ? comb.fac (m) / comb.fac (m - n) : 0 ) << "\n" ; Z ans = 0 ; for (int i = 0 ; i <= m; i++) { ans += comb.binom (m, i) * power (Z (m - i), n) * (i & 1 ? -1 : 1 ); } cout << ans << "\n" ; ans = 0 ; vector<Z> f (m + 1 ) , g (m + 1 ) ; for (int i = 0 ; i <= m; i++) { f[i] = power (Z (i), n) * comb.invfac (i); g[i] = comb.invfac (i) * (i & 1 ? -1 : 1 ); } Poly F (f) , G (g) ; auto strling = F * G; for (int i = 1 ; i <= m; i++) { ans += strling[i]; } cout << ans << "\n" ; cout << (n <= m) << "\n" ; cout << strling[m] << "\n" ; cout << comb.binom (n + m - 1 , m - 1 ) << "\n" ; cout << comb.binom (m, n) << "\n" ; cout << comb.binom (n - 1 , m - 1 ) << "\n" ; vector<Z> a (n + 1 ) ; for (int i = 1 ; i <= m; i++) { for (int j = i; j <= n; j += i) { a[j] += inv[j / i]; } } Poly A (a) ; A = A.exp (n + 1 ); cout << A[n] << "\n" ; cout << (n <= m) << "\n" ; cout << (n >= m ? A[n - m] : 0 ) << "\n" ; return 0 ; }
指数生成函数
指数生成函数的形式是:\(\hat F(x) =
\sum_{n}\limits
a_n\dfrac{x^n}{n!}\) ,这么定义的原因是用来表示不可区分的对象,需要结合运算来理解。我们定义序列
\(a\) 的指数生成函数是 \(F(x) = \sum_{n\ge 0}\limits
a_n\dfrac{x^n}{n!}\) ,那么 \(F(x)\) 实际也是序列 \(\dfrac{a_n}{n!}\)
的普通生成函数,二者没有区别,只是理解问题的方式。
我们通过组合数学来理解一下这样的定理,我们知道多重集排列数,假设共有
\(n\) 个球,其中有 \(k\) 类不同种类的球,第 \(i\) 类球有 \(i\) 个,则这 \(n\) 个球的全排列为 \(\dfrac{n!}{n_1!n_2!...n_k!}\)
。我们尝试在集合中选择去拿取多少个物品的时候,由于每类物品是无序的,我们尝试去掉顺序,因此定义系数为
\(\dfrac{a_i}{i!}\) ,而最终生成函数的乘积中,\(x^n\)
前面的系数并不是我们的答案,还需要乘上 \(n!\) 。
基本运算
指数生成函数相加和普通生成函数是一致的。
重点是指数生成函数的乘法运算,设两个序列 \(a,b\) 分别对应的指数生成函数是 \(\hat F(x),\hat G(x)\) ,那么有: \[
\begin{align*}
\hat F(x) \hat G(x)
&= \sum_{i \ge 0} a_i \frac{x^i}{i!} \sum_{j \ge 0} b_j
\frac{x^j}{j!} \\
&= \sum_{n \ge 0} x^n \sum_{i=0}^{n} a_i b_{n-i} \frac{1}{i!(n-i)!}
\\
&= \sum_{n \ge 0} \frac{x^n}{n!} \sum_{i=0}^{n} \binom{n}{i} a_i
b_{n-i}
\end{align*}
\] 那么 \(\hat F(x)\hat G(x)\)
是序列 \(\sum_{i=0}^n\limits\dbinom{n}{i}a_ib_{n-i}\)
的生成函数。
封闭形式
序列 \(\{1,1,1,...\}\)
的指数生成函数是 \(\hat F(x) = \sum_{n\ge
0}\dfrac{x^n}{n!} = e^x\) 。
同理,\(\{1,p,p^2,...\}\)
的指数生成函数是 \(\hat F(x) = \sum_{n\ge
0}\dfrac{p^nx^n}{n!} = e^{px}\) 。
题意
有三个盒子,将 \(n\)
个物品放入这三个盒子中,要求这三个盒子中放的球的数量必须分别是 \(A,B,C\) 的倍数。解决如下两种问题,模
998244353:
假设物品是不可区分的,求放 \(n\)
个物品的方案数。
假设物品是是可区分的,求放 \(n\)
个物品的方案数。
题解
第一问是常规生成函数,和付公主的背包一题类似,不过按照那题的方法求多项式
exp 会被卡常。由于盒子数量不多,可以尝试直接系数相加。
第二问考虑到有序性,在单独考虑每个盒子时除以 \(n!\) 去掉顺序在求生成函数的乘法,答案就是
\([x^n]G_1(x)G_2(x)G_3(x)\times
n!\) ,其中 \([x^i]\)
符号代表从生成函数中取 \(x^i\)
项的系数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 #include <bits/stdc++.h> #define int long long using namespace std;using i64 = long long ;using u64 = unsigned long long ;using u32 = unsigned ;using u128 = unsigned __int128;using i128 = __int128;using ld = long double ;template <class T >constexpr T power (T a, i64 b) { T res = 1 ; for (; b; b /= 2 , a *= a) { if (b % 2 ) { res *= a; } } return res; } constexpr i64 mul (i64 a, i64 b, i64 p) { i64 res = a * b - i64 (1.L * a * b / p) * p; res %= p; if (res < 0 ) { res += p; } return res; } template <int P>struct MInt { int x; constexpr MInt () : x{ } {} constexpr MInt (i64 x) : x{norm (x % getMod ())} {} static int Mod; constexpr static int getMod () { if (P > 0 ) { return P; } else { return Mod; } } constexpr static void setMod (int Mod_) { Mod = Mod_; } constexpr int norm (int x) const { if (x < 0 ) { x += getMod (); } if (x >= getMod ()) { x -= getMod (); } return x; } constexpr int val () const { return x; } explicit constexpr operator int () const { return x; } constexpr MInt operator -() const { MInt res; res.x = norm (getMod () - x); return res; } constexpr MInt inv () const { assert (x != 0 ); return power (*this , getMod () - 2 ); } constexpr MInt &operator *=(MInt rhs) & { x = 1LL * x * rhs.x % getMod (); return *this ; } constexpr MInt &operator +=(MInt rhs) & { x = norm (x + rhs.x); return *this ; } constexpr MInt &operator -=(MInt rhs) & { x = norm (x - rhs.x); return *this ; } constexpr MInt &operator /=(MInt rhs) & { return *this *= rhs.inv (); } friend constexpr MInt operator *(MInt lhs, MInt rhs) { MInt res = lhs; res *= rhs; return res; } friend constexpr MInt operator +(MInt lhs, MInt rhs) { MInt res = lhs; res += rhs; return res; } friend constexpr MInt operator -(MInt lhs, MInt rhs) { MInt res = lhs; res -= rhs; return res; } friend constexpr MInt operator /(MInt lhs, MInt rhs) { MInt res = lhs; res /= rhs; return res; } friend constexpr std::istream &operator >>(std::istream &is, MInt &a) { i64 v; is >> v; a = MInt (v); return is; } friend constexpr std::ostream &operator <<(std::ostream &os, const MInt &a) { return os << a.val (); } friend constexpr bool operator ==(MInt lhs, MInt rhs) { return lhs.val () == rhs.val (); } friend constexpr bool operator !=(MInt lhs, MInt rhs) { return lhs.val () != rhs.val (); } }; template <>int MInt<0 >::Mod = 998244353 ;template <int V, int P>constexpr MInt<P> CInv = MInt <P>(V).inv ();constexpr int P = 998244353 ;using Z = MInt<P>; using D = MInt<0 >; std::vector<int > rev; std::vector<Z> roots{0 , 1 }; void dft (std::vector<Z> &a) { int n = a.size (); if ((int )(rev.size ()) != n) { int k = __builtin_ctz(n) - 1 ; rev.resize (n); for (int i = 0 ; i < n; i++) { rev[i] = rev[i >> 1 ] >> 1 | (i & 1 ) << k; } } for (int i = 0 ; i < n; i++) { if (rev[i] < i) { std::swap (a[i], a[rev[i]]); } } if ((int )(roots.size ()) < n) { int k = __builtin_ctz(roots.size ()); roots.resize (n); while ((1 << k) < n) { Z e = power (Z (3 ), (P - 1 ) >> (k + 1 )); for (int i = 1 << (k - 1 ); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1 ] = roots[i] * e; } k++; } } for (int k = 1 ; k < n; k *= 2 ) { for (int i = 0 ; i < n; i += 2 * k) { for (int j = 0 ; j < k; j++) { Z u = a[i + j]; Z v = a[i + j + k] * roots[k + j]; a[i + j] = u + v; a[i + j + k] = u - v; } } } } void idft (std::vector<Z> &a) { int n = a.size (); std::reverse (a.begin () + 1 , a.end ()); dft (a); Z inv = (1 - P) / n; for (int i = 0 ; i < n; i++) { a[i] *= inv; } } struct Poly { std::vector<Z> a; Poly () {} explicit Poly ( int size, std::function<Z(int )> f = [](int ) { return 0 ; }) : a(size) { for (int i = 0 ; i < size; i++) { a[i] = f (i); } } Poly (const std::vector<Z> &a) : a (a) {} Poly (const std::initializer_list<Z> &a) : a (a) {} int size () const { return a.size (); } void resize (int n) { a.resize (n); } Z operator [](int idx) const { if (idx < size ()) { return a[idx]; } else { return 0 ; } } Z &operator [](int idx) { return a[idx]; } Poly mulxk (int k) const { auto b = a; b.insert (b.begin (), k, 0 ); return Poly (b); } Poly modxk (int k) const { k = std::min (k, size ()); return Poly (std::vector <Z>(a.begin (), a.begin () + k)); } Poly divxk (int k) const { if (size () <= k) { return Poly (); } return Poly (std::vector <Z>(a.begin () + k, a.end ())); } friend Poly operator +(const Poly &a, const Poly &b) { std::vector<Z> res (std::max(a.size(), b.size())) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = a[i] + b[i]; } return Poly (res); } friend Poly operator -(const Poly &a, const Poly &b) { std::vector<Z> res (std::max(a.size(), b.size())) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = a[i] - b[i]; } return Poly (res); } friend Poly operator -(const Poly &a) { std::vector<Z> res (a.size()) ; for (int i = 0 ; i < (int )(res.size ()); i++) { res[i] = -a[i]; } return Poly (res); } friend Poly operator *(Poly a, Poly b) { if (a.size () == 0 || b.size () == 0 ) { return Poly (); } if (a.size () < b.size ()) { std::swap (a, b); } if (b.size () < 128 ) { Poly c (a.size() + b.size() - 1 ) ; for (int i = 0 ; i < a.size (); i++) { for (int j = 0 ; j < b.size (); j++) { c[i + j] += a[i] * b[j]; } } return c; } int sz = 1 , tot = a.size () + b.size () - 1 ; while (sz < tot) { sz *= 2 ; } a.a.resize (sz); b.a.resize (sz); dft (a.a); dft (b.a); for (int i = 0 ; i < sz; ++i) { a.a[i] = a[i] * b[i]; } idft (a.a); a.resize (tot); return a; } friend Poly operator *(Z a, Poly b) { for (int i = 0 ; i < (int )(b.size ()); i++) { b[i] *= a; } return b; } friend Poly operator *(Poly a, Z b) { for (int i = 0 ; i < (int )(a.size ()); i++) { a[i] *= b; } return a; } Poly &operator +=(Poly b) { return (*this ) = (*this ) + b; } Poly &operator -=(Poly b) { return (*this ) = (*this ) - b; } Poly &operator *=(Poly b) { return (*this ) = (*this ) * b; } Poly &operator *=(Z b) { return (*this ) = (*this ) * b; } Poly deriv () const { if (a.empty ()) { return Poly (); } std::vector<Z> res (size() - 1 ) ; for (int i = 0 ; i < size () - 1 ; ++i) { res[i] = (i + 1 ) * a[i + 1 ]; } return Poly (res); } Poly integr () const { std::vector<Z> res (size() + 1 ) ; for (int i = 0 ; i < size (); ++i) { res[i + 1 ] = a[i] / (i + 1 ); } return Poly (res); } Poly inv (int m) const { Poly x{a[0 ].inv ()}; int k = 1 ; while (k < m) { k *= 2 ; x = (x * (Poly{2 } - modxk (k) * x)).modxk (k); } return x.modxk (m); } Poly log (int m) const { return (deriv () * inv (m)).integr ().modxk (m); } Poly exp (int m) const { Poly x{1 }; int k = 1 ; while (k < m) { k *= 2 ; x = (x * (Poly{1 } - x.log (k) + modxk (k))).modxk (k); } return x.modxk (m); } Poly pow (int k, int m) const { int i = 0 ; while (i < size () && a[i].val () == 0 ) { i++; } if (i == size () || 1LL * i * k >= m) { return Poly (std::vector <Z>(m)); } Z v = a[i]; auto f = divxk (i) * v.inv (); return (f.log (m - i * k) * k).exp (m - i * k).mulxk (i * k) * power (v, k); } Poly sqrt (int m) const { Poly x{1 }; int k = 1 ; while (k < m) { k *= 2 ; x = (x + (modxk (k) * x.inv (k)).modxk (k)) * ((P + 1 ) / 2 ); } return x.modxk (m); } Poly mulT (Poly b) const { if (b.size () == 0 ) { return Poly (); } int n = b.size (); std::reverse (b.a.begin (), b.a.end ()); return ((*this ) * b).divxk (n - 1 ); } std::vector<Z> eval (std::vector<Z> x) const { if (size () == 0 ) { return std::vector <Z>(x.size (), 0 ); } const int n = std::max ((int )(x.size ()), size ()); std::vector<Poly> q (4 * n) ; std::vector<Z> ans (x.size()) ; x.resize (n); std::function<void (int , int , int )> build = [&](int p, int l, int r) { if (r - l == 1 ) { q[p] = Poly{1 , -x[l]}; } else { int m = (l + r) / 2 ; build (2 * p, l, m); build (2 * p + 1 , m, r); q[p] = q[2 * p] * q[2 * p + 1 ]; } }; build (1 , 0 , n); std::function<void (int , int , int , const Poly &)> work = [&](int p, int l, int r, const Poly &num) { if (r - l == 1 ) { if (l < (int )(ans.size ())) { ans[l] = num[0 ]; } } else { int m = (l + r) / 2 ; work (2 * p, l, m, num.mulT (q[2 * p + 1 ]).modxk (m - l)); work (2 * p + 1 , m, r, num.mulT (q[2 * p]).modxk (r - m)); } }; work (1 , 0 , n, mulT (q[1 ].inv (n))); return ans; } }; signed main () { std::ios::sync_with_stdio (false ); std::cin.tie (nullptr ); int a, b, c, n; cin >> n >> a >> b >> c; vector<Z> inv (n + 1 ) ; inv[1 ] = 1 ; for (int i = 2 ; i <= n; i++) { inv[i] = (P - P / i) * inv[P % i]; } vector<Z> f (n + 1 ) ; for (int i = 1 ; i <= n; i++) { if (i % a == 0 ) { f[i] += inv[i / a]; } if (i % b == 0 ) { f[i] += inv[i / b]; } if (i % c == 0 ) { f[i] += inv[i / c]; } } Poly ans1 (f) ; ans1 = ans1. exp (n + 1 ); cout << ans1[n] << "\n" ; vector<Z> fac (n + 1 ) , invfac (n + 1 ) ; fac[0 ] = 1 ; for (int i = 1 ; i <= n; i++) { fac[i] = fac[i - 1 ] * i; } invfac[n] = power (fac[n], P - 2 ); for (int i = n - 1 ; i >= 0 ; i--) { invfac[i] = invfac[i + 1 ] * (i + 1 ); } vector<Z> g1 (n + 1 ) , g2 (n + 1 ) , g3 (n + 1 ) ; for (int i = 0 ; i <= n; i++) { if (i % a == 0 ) { g1[i] = invfac[i]; } if (i % b == 0 ) { g2[i] = invfac[i]; } if (i % c == 0 ) { g3[i] = invfac[i]; } } Poly G1 (g1) , G2 (g2) , G3 (g3) ; auto mid = G1 * G2; auto G = mid * G3; cout << G[n] * fac[n] << "\n" ; return 0 ; }